Catechol metabolites of endogenous estrogens induce redox cycling and generate reactive oxygen species in breast epithelial cells.

نویسندگان

  • Karma C Fussell
  • Ronald G Udasin
  • Peter J S Smith
  • Michael A Gallo
  • Jeffrey D Laskin
چکیده

Estrogens are major risk factors for the development of breast cancer; they can be metabolized to catechols, which are further oxidized to DNA-reactive quinones and semiquinones (SQs). These metabolites are mutagenic and may contribute to the carcinogenic activity of estrogens. Redox cycling of the SQs and subsequent generation of reactive oxygen species (ROS) is also an important mechanism leading to DNA damage. The SQs of exogenous estrogens have been shown to redox cycle, however, redox cycling and the generation of ROS by endogenous estrogens has never been characterized. In the present studies, we determined whether the catechol metabolites of endogenous estrogens, including 2-hydroxyestradiol, 4-hydroxyestradiol, 4-hydroxyestrone and 2-hydroxyestriol, can redox cycle in breast epithelial cells. These catechol estrogens, but not estradiol, estrone, estriol or 2-methoxyestradiol, were found to redox cycle and generate hydrogen peroxide (H(2)O(2)) and hydroxyl radicals in lysates of three different breast epithelial cell lines: MCF-7, MDA-MB-231 and MCF-10A. The generation of ROS required reduced nicotinamide adenine dinucleotide phosphate as a reducing equivalent and was inhibited by diphenyleneiodonium, a flavoenzyme inhibitor, indicating that redox cycling is mediated by flavin-containing oxidoreductases. Using extracellular microsensors, catechol estrogen metabolites stimulated the release of H(2)O(2) by adherent cells, indicating that redox cycling occurs in viable intact cells. Taken together, these data demonstrate that catechol metabolites of endogenous estrogens undergo redox cycling in breast epithelial cells, resulting in ROS production. Depending on the localized concentrations of catechol estrogens and enzymes that mediate redox cycling, this may be an important mechanism contributing to the development of breast cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estrogens as endogenous genotoxic agents--DNA adducts and mutations.

Estrogens induce tumors in laboratory animals and have been associated with breast and uterine cancers in humans. In relation to the role of estrogens in the induction of cancer, we examine formation of DNA adducts by reactive electrophilic estrogen metabolites, formation of reactive oxygen species by estrogens and the resulting indirect DNA damage by these oxidants, and, finally, genomic and g...

متن کامل

Resveratrol inhibits TCDD-induced expression of CYP1A1 and CYP1B1 and catechol estrogen-mediated oxidative DNA damage in cultured human mammary epithelial cells.

Resveratrol (3,5,4'-trihydroxystilbene), a naturally occurring phytoalexin present in grapes and other foods, has been reported to possess chemopreventive effects as revealed by its striking inhibition of diverse cellular events associated with tumor initiation, promotion and progression. In our present study, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), when treated with the cultured human mamm...

متن کامل

Induction of nuclear catechol-O-methyltransferase by estrogens in hamster kidney: implications for estrogen-induced renal cancer.

Catecholestrogens are postulated to contribute to carcinogenesis by causing DNA damage mediated by reactive oxygen species generated during redox cycling between catechol and quinone estrogens, and by quinone estrogens that can form depurinating adducts. The above hypothesis is based principally on studies of the cancers that develop in renal cortex of hamsters treated with primary estrogens: H...

متن کامل

نقش استرس اکسیداتیو در تکثیر بی‌رویه و مرگ سلولی

Abstract During normal cellular activities Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) are produced. In addition to beneficial functions they play a critical role in cell death and prevent apoptosis. Every cell is equipped with an extensive antioxidant defense system to combat the excessive production of active radicals. Oxidative stress occurs with destruction of cellu...

متن کامل

Hormone-associated cancer: mechanistic similarities between human breast cancer and estrogen-induced kidney carcinogenesis in hamsters.

Estrogens are risk factors for human breast cancer and induce kidney tumors in Syrian hamsters. Mechanistic features of the estrogen-induced hamster kidney tumor model have been compared with corresponding aspects of human breast cancer to gain insight into the mechanism of human mammary oncogenesis. Shared characteristics point to a mechanism of metabolic activation of steroidal estrogens to 4...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Carcinogenesis

دوره 32 8  شماره 

صفحات  -

تاریخ انتشار 2011